Supplement

Experimental Part

Synthesis

General

All final ¹H and ¹³C NMR (300 MHz and 600 MHz) spectra were obtained on a Varian Unity Plus 300 or a Varian Unity Plus 500. Deuterochloroform (99.98% in CDCl₃) and deuterobenzene (99+% in C_6D_6) were used as solvents and the chemical shifts were assigned using tetramethylsilane, CHCl₃, C_6H_5D as internal references.

The mass spectral analyses were carried out on a Finningan-Mat 8430 mass spectrometer equipped with a Varian 3400 gas chromatograph. TLC analyses were carried out on a commercially available 0.2 mm thick silica gel 60 PF254 containing gypsum as a binder. Column chromatographic separations were carried out using 230-400 mesh silica gel purchased from Aldrich company.

Synthesis of the tertiary alcohol 6:

To an open flask containing 20mL of saturated ammonium chloride solution, 40 mmol of zinc dust and 200 mmol of acetone, were added 40 mmol of the allyl halide while stirring at room temperature. Ultrasonic and magnetic stirring were alternatively applied in the respective periods of 25 min and 5 min for a minimum of 3 hours or until the total disappearance of the zinc dust. To facilitate the work-up it is better to leave the solution stirring for at least 12 hours. Ether (25 mL) was added to the flask and the reaction mixture was filtered under vacuum and the layers were separated. The organic layer was washed with water (3 x 10 mL), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. <u>2-methyl-3-phenyl-4-penten-2-ol (6)</u> was prepared in 91% yield from cinnamyl chloride following the general procedure described above. Yellow oil: ¹H NMR (CDCl₃) 1.17 (s, 3H), 1.21 (s, 3 H), 3.28 (d, *J* = 9.6 Hz, 1 H), 5.15 (dd, *J* = 16.9, 1 Hz, 1 H), 5.2 (dd, *J* = 8.5, 1 Hz, 1 H), 6.31 (ddd, *J* = 16.8, 10, 10 Hz, 1 H), 7.25 (m, 5 H).

2) Synthesis of the epoxy t-alcohol (7):

3 mmol of *t*-alcohol was dissolved in 10 mL of dry methylene chloride at 0°C. 5.5 mmol (1.8 equiv.) of *m*-chloroperbenzoic acid (*m*-CPBA, 85%) in 5 mL of dry methylene chloride were added at 0°C. The reaction mixture was allowed to reach room temperature, then it was refluxed for 2 hours. The reaction mixture was then allowed to cool down to room temperature. The solution was transferred to a separatory funnel. Excess peracid was destroyed with 10% sodium sulfite solution, until a starch-iodide test was negative. The organic layer was washed with saturated aqueous sodium chloride solution (2 x 30 mL), dried over MgSO₄, and concentrated under reduced pressure. The epoxy *t*-alcohol was purified by Medium Pressure Liquid Chromatography using an eluent system composed of a gradient of Skellysolve B and ether.

<u>4,5-epoxy-2-methyl-3-phenyl-pentan-2-ol (7)</u> was prepared in 82% from using the general procedure described above. A mixture of two diastereoisomers was obtained (ratio 2.5:1) as the crude product. One diastereoisomer was isolated as a yellow oil: ¹H NMR (CDCl₃) 1.22 (s, 3 H), 1.36 (s, 3 H), 2.22 (d, J = 8.8 Hz, 1 H), 2.38 (dd, J = 4.9, 2.8 Hz, 1 H), 2.74 (dd, J = 4.8, 4.2 Hz, 1 H), 3.55 (m, 1 H), 7.25-7.4 (m, 5 H). ¹³C NMR (CDCl₃) 28.1, 28.13, 45.8, 52.6, 59.4, 72.5, 126.8, 128.1, 129.0, 139.0. IR (neat): 702, 741, 866, 898, 951, 1153, 1373, 1453, 1493, 2974, 3467. MS (CI) calculated for [M+H⁺]: 193.1229 observed: 193.1225.

The other diastereoisomer was isolated as a yellow oil: ¹H NMR (CDCl₃) 1.20 (s, 3 H), 1.35 (s, 3 H), 2.42 (d, J = 8 Hz, 1 H), 2.59 (dd, J = 5, 2.6 Hz, 1 H), 2.93 (dd, J = 5, 3.9 Hz, 1 H), 7.25-7.4 (m, 5 H). ¹³C NMR (CDCl₃) 28.3, 28.7, 48.7, 52.3, 58.7, 72.3, 127.0, 128.2, 129.5, 138.2.

Synthesis of the sulfenates 4 and 5:

To a 50 mL three-neck flask containing the alcohol (5mmol) and 15 mL of anhydrous methylene chloride under an argon atmosphere in a darkened hood was added at -30° C 1.6 mL (11.5 mmol) of freshly distilled triethylamine. After the addition, the mixture was stirred for 10 min. 10 mL of a methylene chloride solution of 4-nitrobenzenesulfenyl chloride was then added slowly via a dropping funnel. After the reaction, the mixture was stirred for 15 min and was then allowed to warm to room temperature for 30 min. The reaction mixture was washed with cold

5% hydrochloric acid (2 x 10 mL) and cold water (3 x 10 mL), and the extract was dried over magnesium sulfate, keeping the light exposure to a minimum. The solvent was removed under reduced pressure in an aluminum-wrapped flask giving the sulfenates in a crude form. Analysis of the crude products by ¹H NMR showed the presence of unreacted alcohol, 4-nitrobenzene disulfide and the corresponding sulfinate, presumably formed by air/light oxidation of the sulfenate during the work-up, as the major side products. The sulfenates were purified by flash chromatography with silica gel using an eluent system composed of hexanes and methylene chloride in a 3:1 ratio.

<u>4.5-epoxy-2-methyl-3-phenyl-2-pentyl 4-nitrobenzenesulfenate</u> (**4**) was prepared from 4,5-epoxy-2-methyl-3-phenyl-pentan-2-ol in 39% yield after purification as a single diastereoisomer. Dark yellow oil: ¹H NMR (CDCl₃) 1.29 (s, 3H), 1.47 (s, 3H), 2.37 (dd, J = 4.9, 2.7 Hz, 1H), 2.43 (d, J = 8.8 Hz, 1H), 2.77 (t, J = 4.6 Hz, 1H), 3.61 (ddd, J = 2.7, 4.15, 8.55 Hz, 1H), 7.03 (d, J = 8.8 Hz, 2H), 7.25-7.4 (m, 5H), 8.02 (d, J = 8.8 Hz, 2H). ¹³C NMR (CDCl₃) 23.6, 24.6, 45.8, 52.1, 59.2, 87.5, 120.0, 123.8, 127.4, 128.3, 129.7, 138.2, 144.8, 153.8. IR (neat): 735, 840, 909, 1087, 1336, 1516, 1577, 1594. MS (CI) calculated for $C_{18}H_{19}NO_4S$: 346.1113, found 346.1112.

<u>Cinnamyl-4-nitrobenzenesulfenate</u> (**5**) was prepared in 28% yield after purification from cinnamyl alcohol. This compound was found to be sensitive to air oxidation in the presence of light. Pale yellow solid, forming flakes: mp (uncorrected) 64-66°C. ¹H NMR (CDCl₃) 8.22 (d, J = 9 Hz, 2 H), 7.34 (m, 5 H), 7.3 (d, J = 9.2 Hz, 2 H), 6.7 (d, J = 15.9 Hz, 1H), 6.33 (dt, J = 15.9, 6.8 Hz, 1 H), 4.54 (d, 6.9 Hz, 2 H). ¹³C NMR (CDCl₃) 79.6, 120.4, 123.5, 124.5, 127.0 (2 CH), 128.8, 128.9, 136.0, 136.4, 151.7. IR (neat): 1577, 1509, 1333, 1084, 921, 837, 740. MS (CI, [M+H]⁺) calcd: 288.0694, obsd: 288.0714.

Independent Synthesis

<u>1,2-epoxy-3-phenyl-3-propyl-4-nitrobenzene sulfide (8)</u> was isolated from the crude products of the photolysis of 4,5-epoxy-2-methyl-3-phenyl-2-pentyl 4-nitrobenzenesulfenate and also from the crude product of the photolysis of cinnamyl-4-nitrobenzenesulfenate by flash chromatography with a gradient of methylene chloride and hexanes as eluent. A mixture of two diastereoisomers was obtained. Yellow oil: ¹H NMR (CDCl₃) 2.65 (dd, J = 2.35, 3.92 Hz, 1H diastereoisomer 1), 2.70 (dd, J = 2.57, 4.71 Hz, 1H diastereoisomer 2), 2.85 (m, 1H), 3.45 (m, 1H), 4.21 (d, J = 7.07 Hz, 1H diastereoisomer 2), 4.39 (d, J = 6.0 Hz, 1H diastereoisomer 1), 7.25-7.45 (m, 7H), 8.08 (d, J = 9Hz, 2H). ¹H NMR (C₆D₆): 2.12 (dd, J = 2.56, 5.13 Hz, 1H diastereoisomer 1 or 2), 2.15 (m, 1H) 2.22 (dd, J = 3.85, 5.13 Hz, 1H diastereoisomer 1 or 2), 2.98 (m, 1H), 3.78 (d, J = 6.64 Hz, 1H diastereoisomer 2), 3.81 (d, J = 5.77 Hz, 1H diastereoisomer 1), 6.78 (d, J = 9 Hz, 1H diastereoisomer 1), 6.85 (d, J = (Hz, 1H diastereoisomer 2), 6.9-7.3 (m, 5H), 7.6 (m, 2H). ¹³C NMR (CDCl₃): 46.6, 46.8, 53.5, 54.1, 54.8, 55.0, 123.8, 123.9, 128.0, 128.2, 128.5 (2 C, a shoulder is present), 128.96, 129.0, 129.2, 129.7, 136.6, 136.9, 144.4, 144.9, 145.9, 146.1. IR (in CCl₄): 699, 742, 789, 853, 1093, 1338, 1511, 1578, 1595, 2920, 3062. MS (FAB, [M+H]⁺) calcd: 288.0694, obsd: 288.0703.

Photolysis

Photolysis of cinnamyl-4-nitrobenzene sulfenate (5).

<u>Monitoring of the reaction:</u> 10 mg of cinnamyl-4-nitrobenzene sulfenate were dissolved in 0.6 mL of deuterobenzene and placed in a 5mm NMR tube. The solution was degassed by applying sonication / vacuum for ~ 20 minutes. ¹H NMR analysis was performed on the sample before the thermolysis. The NMR tube was then placed in a Rayonet UV reactor equipped with 350 nm wavelength light bulbs. Periodically, the tube was removed from the reactor and ¹H NMR analysis was performed. Spectra were obtained after 30s, 2 min, 5 min, 10 min, 22 min and 30 min. At that time, the starting material was almost completely disappeared and the photolysis was stopped. The spectra before and after the photolysis are provided in this supporting information. The solvent was removed under reduced pressure. The crude product was dissolved in deuterochloroform and ¹H NMR analysis was performed.

Larger scale: 80 mg of cinnamyl-4-nitrobenzene sulfenate were dissolved in 4.0 mL of benzene and placed in two 5mm NMR tubes. The solution was degassed by applying sonication / vacuum for ~ 20 minutes. The NMR tubes were then placed in a Rayonet UV reactor equipped with 350 nm wavelength light bulbs for 33 minutes. The solvent was removed under reduced pressure. Flash chromatography was performed on the crude product using a gradient of methylene chloride and hexanes as the eluent. 5 mg of pure 1,2-epoxy-3-phenyl-3-propyl-4-

nitrobenzene sulfide were isolated as a 1:1 mixture of diastereoisomers for characterization purposes.

Photolysis of 4,5-epoxy-2-methyl-3-phenyl-2-pentyl 4-nitrobenzenesulfenate (4).

Monitoring of the reaction: 10 mg of 4,5-epoxy-2-methyl-3-phenyl-2-pentyl 4nitrobenzenesulfenate were dissolved in 0.6 mL of deuterobenzene and placed in a 5mm NMR tube. The solution was degassed by applying sonication / vacuum for ~ 20 minutes. ¹H NMR analysis was performed on the sample before the thermolysis. The NMR tube was then placed in a Rayonet UV reactor equipped with 350 nm wavelength light bulbs. Periodically, the tube was removed from the reactor and ¹H NMR analysis was performed. Spectra were obtained after 30s, 2 min, 5 min, 10 min, 20 min and 30 min. At that time, the starting material was almost completely disappeared and the photolysis was stopped. The spectra before and after the photolysis are provided in this supporting information. The solvent was removed under reduced pressure. The crude product was dissolved in deuterochloroform and ¹H NMR analysis was performed. Flash chromatography was performed on the crude product using a gradient of methylene chloride and hexanes as the eluent. Three fractions yielded enough product for identification purposes: one contained 4-nitrophenyl disulfide, another 1,2-epoxy-3-phenyl-3propyl-4-nitrobenzene sulfide and the last one cinnamaldehyde.

Computational Studies

Cinnamyl-benzyl sulfenate B3LYP/6-31G*

Center Number	Atomic Number	Coorc X	linates (An Y	ugstroms) Z
1	16	-1.064616	-1.310653	0.091344
2	6	-1.278601	-2.479068	1.426199
3	6	-1.764517	-4.328358	3.467347
4	б	-0.399135	-3.551338	1.620965
5	6	-2.398843	-2.330731	2.254708
б	6	-2.645404	-3.265203	3.261058
7	б	-0.639392	-4.461239	2.649912
8	1	0.464478	-3.659540	0.973244
9	1	-3.069289	-1.485724	2.119168
10	1	-3.518044	-3.147554	3.898108
11	1	0.050560	-5.286885	2.804405
12	1	-1.950829	-5.045740	4.261597
13	8	0.610886	-1.390071	-0.147085
14	6	1.375238	-0.443052	0.618901
15	6	1.429417	0.934239	0.018942
16	1	2.383304	-0.880796	0.658480
17	1	1.001662	-0.401944	1.651283
18	6	1.025247	1.244705	-1.220183
19	1	1.860528	1.690794	0.674279
20	6	1.063340	2.565725	-1.865180
21	1	0.632693	0.439199	-1.838826
22	6	1.125017	5.045334	-3.212701
23	6	1.379386	3.754004	-1.180519
24	6	0.768437	2.655587	-3.236841
25	6	0.801156	3.878463	-3.905328
26	6	1.411890	4.975823	-1.846021
27	1	1.590214	3.724386	-0.115210
28	1	0.515219	1.749420	-3.782410
29	1	0.571876	3.918873	-4.966958
30	1	1.656441	5.880639	-1.295541
31	1	1.148737	6.001222	-3.728880
	·	20007604		15
F.(KB+HFT	$_{1}YP) = -1053.$	3889/624 A.	.U. aiter	15 cycles
	Convg =	0.8528D-08		$-V/1^{\circ} = 2.00/4$
R	S^^2 =	0.0000	2400	
Zero-poir	t correction=	T	.2488	668 (Hartree/Particle)
Thermal	correction to	Energy=	0.264	21/ 161
		Cibba Erros Erros		070
Inermal	correction to	GIDDS Free Ene	ergy= 0.201	.979 1052 140109
Sulli OL E	logtronic and	thormal Energy	erdies= -	1052 124760
Sum of a	logtropic and	thermal Energy	Les -	1052 102015
Sulli OL E	logtronic and	thermal Enthal	rbres= -	1052 106007
SUIII OL E	erectronic and	unermai free f	merdres= -	1002.1001/

Supporting Information for " Epoxide formation by ring closure of the cinnamyloxy radical." Jérôme Amaudrut and Olaf Wiest page 7 / 20

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	8	0	0.666888	2.536214	0.281927
2	6	0	-0.587010	2.841432	0.909731
3	1	0	-0.680554	2.512573	1.945133
4	б	0	-0.501016	1.842305	-0.166094
5	1	0	-0.988674	3.832662	0.699010
6	6	0	-0.587015	0.357327	0.132251
7	1	0	-0.835226	2.133042	-1.163188
8	б	0	-2.022251	-0.125947	0.113123
9	1	0	-0.143324	0.173021	1.114674
10	16	0	0.399392	-0.667258	-1.091492
11	6	0	-4.700404	-0.987307	0.118712
12	6	0	-2.810544	-0.020545	-1.043001
13	6	0	-2.596068	-0.672820	1.268182
14	б	0	-3.924364	-1.099205	1.273339
15	6	0	-4.138071	-0.448622	-1.039877
16	1	0	-2.382628	0.387185	-1.955265
17	1	0	-1.996043	-0.765937	2.170438
18	1	0	-4.351523	-1.520240	2.179678
19	1	0	-4.732910	-0.362315	-1.945282
20	1	0	-5.734819	-1.320017	0.120660
21	6	0	2.070731	-0.598563	-0.430934
22	6	0	4.704228	-0.609259	0.521388
23	6	0	2.568067	-1.712362	0.260245
24	6	0	2.903179	0.507364	-0.650482
25	6	0	4.211996	0.501223	-0.168015
26	6	0	3.881622	-1.716815	0.732491
27	1	0	1.923602	-2.571526	0.420443
28	1	0	2.522230	1.370613	-1.184330
29	1	0	4.849489	1.365242	-0.335671
30	1	0	4.259925	-2.585137	1.265659
31	1	0	5.726595	-0.611981	0.890150
E(RB+HF-L	YP) = -1053	.38881192	A.U. after	15 cycles	
-	Convq =	0.7184D-	08	-V/T = 2.0	073
	S**2 =	0.0000			
Zero-point correction= 0.249710 (Hartree/Particle)					
Thermal correction to Energy= 0.264698					
Thermal correction to Enthalpy= 0.265642					
Thermal correction to Gibbs Free Energy= 0.203577					
Sum of electronic and zero-point Energies= -1053.139102					
Sum of electronic and thermal Energies= -1053.124114					
Sum of e	lectronic an	d thermal En	thalpies= -	1053.123169	
Sum of e	lectronic an	d thermal Fr	ee Energies= -	1053.185235	

1-2epoxy-3-phenyl-3-propyl-phenyl sulfide B3LYP/6-31G*

Supporting Information for " Epoxide formation by ring closure of the cinnamyloxy radical." Jérôme Amaudrut and Olaf Wiest page 8 / 20

Cinnamyloxy radical B3LYP/6-31G*

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	1	0	2.397775	-0.007361	-2.733197
2	6	0	1.380908	0.055478	-2.355157
3	6	0	-1.221038	0.203283	-1.378442
4	6	0	1.155956	0.050023	-0.982740
5	6	0	0.306871	0.135860	-3.247611
б	6	0	-0.996104	0.208496	-2.753472
7	б	0	-0.152409	0.126555	-0.466614
8	1	0	2.001490	-0.023288	-0.305342
9	1	0	0.486659	0.138002	-4.319139
10	1	0	-1.837707	0.267836	-3.438240
11	б	0	-0.450264	0.126402	0.968703
12	1	0	-2.238131	0.259163	-0.997441
13	б	0	0.426444	0.186382	1.987962
14	1	0	-1.511306	0.100433	1.218293
15	1	0	1.500466	0.173391	1.826887
16	б	0	-0.017056	0.133541	3.438310
17	1	0	0.630720	0.779055	4.056382
18	8	0	0.171559	-1.204015	3.719411
19	1	0	-1.064323	0.464759	3.540869
E(UB+HF-L	(YP) = -423.	505100029	A.U. after	33 cycles	
	Convg =	0.8404D-0)8	-V/T = 2.00	096
	S**2 =	0.7567			
Zero-poi	nt correctio	n=	0.153	928 (Hartree,	/Particle)
Thermal	correction t	o Energy=	0.162	999	
Thermal	correction t	o Enthalpy=	0.163	944	
Thermal	correction t	o Gibbs Free	Energy= 0.117	671	
Sum of e	lectronic an	d zero-point	Energies=	-423.351172	
Sum of e	lectronic an	d thermal Ene	ergies=	-423.342101	
Sum of e	lectronic an	d thermal Ent	chalpies=	-423.341157	
Sum of e	lectronic an	d thermal Fre	ee Energies=	-423.387429	

Supporting Information for "Epoxide formation by ring closure of the cinnamyloxy radical." Jérôme Amaudrut and Olaf Wiest page 9 / 20

Oxiranyl benzyl radical B3LYP/6-31G*

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.255566	-0.265917	2.344223
2	б	0	-1.011145	-0.413663	3.104701
3	1	0	-1.833025	0.277078	2.910961
4	1	0	-0.980293	-0.826944	4.114712
5	8	0	-0.704851	-1.318576	2.052460
б	1	0	1.156223	-0.636607	2.831970
7	6	0	0.415932	0.756482	1.309850
8	1	0	-0.476356	0.969868	0.725226
9	1	0	4.791534	3.557486	0.070568
10	6	0	1.597576	1.478294	1.010481
11	6	0	3.906955	2.982919	0.329739
12	6	0	1.578434	2.443374	-0.039330
13	6	0	2.830226	1.302672	1.705305
14	6	0	3.954327	2.041251	1.366187
15	6	0	2.707346	3.175987	-0.369106
16	1	0	0.651793	2.597282	-0.587008
17	1	0	2.895566	0.582363	2.514825
18	1	0	4.880811	1.885677	1.913005
19	1	0	2.660170	3.903303	-1.175460
E(UB+HF-L	$_{\rm YP}) = -423.$	513351044	A.U. after	28 cycles	
	Convg =	0.6741D-0)8	-V/T = 2.00)95
	S**2 =	0.7794			
Zero-point correction= 0.154093 (Hartree/Partic)					/Particle)
Thermal	correction t	o Energy=	0.162	646	
Thermal	correction t	o Enthalpy=	0.163	590	
Thermal	correction t	o Gibbs Free	Energy= 0.119	057	
Sum of e	electronic an	d zero-point	Energies=	-423.359258	
Sum of e	electronic an	d thermal Ene	ergies=	-423.350705	
Sum of e	electronic an	d thermal Ent	halpies=	-423.349761	
Sum of e	electronic an	d thermal Fre	ee Energies=	-423.394294	

NMR Spectrum 1 Cinnamyl-4-nitrobenzenesulfenate (**5**), 1H NMR in CDCL3

NMR Spectrum 2 Cinnamyl-4-nitrobenzenesulfenate (**5**), ¹³C NMR in CDCL₃

IR Spectrum 1 Cinnamyl-4-nitrobenzenesulfenate (**5**), IR

NMR Spectrum 3 ¹H NMR of sulfenate **4**, in CDCl₃

NMR Spectrum 4 ¹³C NMR of sulfenate **4**. In CDCl₃

Supporting Information for "Epoxide formation by ring closure of the cinnamyloxy radical." Jérôme Amaudrut and Olaf Wiest page 15 / 20

IR Spectrum 2 sulfenate **4**, neat

NMR Spectrum 5 Sulfenate **4**, before and after photolysis, in deuterobenzene

NMR Spectrum 6 cinnamyl-4-nitrobenzenesulfenate (**5**), before and after photolysis, in deuterobenzene

NMR Spectrum 7 epoxi-sulfide **8**, ¹H NMR spectrum in deuterochloroform.

NMR Spectrum 8 epoxi-sulfide **8**, ¹³C NMR spectrum, in deuterochloroform.

Supporting Information for "Epoxide formation by ring closure of the cinnamyloxy radical." Jérôme Amaudrut and Olaf Wiest page 20 / 20

IR Spectrum 3 epoxi-sulfide **8**, in CCl₄.

